Chapter 8 Potential Energy & Conservation of Energy

- 1. Potential Energy
- 2. Path Independence of Conservative Forces
- 3. Determining Potential Energy Values
- 4. Conservation of Mechanical Energy
- 5. Reading a Potential Energy Curve
- 6. Work Done on a System by an External Force
- 7. Conservation of Energy

Potential Energy is energy that can be associated with the configuration of a system of objects that exert forces on one another.

- Gravitational Potential Energy
- Elastic Potential Energy

<u>Chapter 7</u> - Kinetic Energy - state of motion of objects in a system.

$$Kinetic\ Energy \equiv \frac{1}{2}mv^2$$

<u>Gravitational potential energy</u> – energy in a set of separated objects which attract one another via the gravitational force.

the system = earth + barbell

Elastic Potential Energy

<u>Elastic potential energy</u> – energy in a compressed or stretched spring-like object.

e.g.: Elastic potential energy stored in a dart gun.

The change in the gravitational potential energy, U_r is defined to equal the negative of the work done by the gravitational force, W_q .

leaves at 1.20 m max h = 4.80 m what is v_0

Conservative & Nonconservative Forces

Conservative Force Example

Spring Force

$$W_1 = -W_2$$

An important concept!

Nonconservative Force Example

Friction Force

 W_1 = Negative Work done by the spring

Negative Work done by friction

 W_2 = Positive Work done by the spring

Negative Work done by friction

 Work done by the gravitation force does not depend upon the choice of paths – a conservative force.

Definition of a Conservative Force

Version 1 – A force is conservative when the work it does on a moving object is independent of the path between the objects initial and final position.

Version 2 – A force is conservative when it does no net work on an object moving around a closed path, starting and finishing at the same point

Path Independence of Conservative Forces

Consider a particle moving under the influence of a conservative force; then:

$$W_{ab} = -W_{ba}$$

Furthermore:

The net work done by a conservative force on a particle moving around every closed path is **zero**:

$$W_{ab,1} + W_{ba,2} = 0$$

The work done by a conservative force on a particle moving between two points *does not depend on the path* taken by the particle.

$$W_{ab,1} = W_{ab,2}$$

Determining Potential Energy Values

The change in the potential energy is defined to equal the negative of the work done by the forces in the system:

$$\Delta U = -W$$

Only *changes* in the potential energy of an object are related to work done by forces on the object or to changes in its kinetic energy; hence, the reference point at which U = 0 is *arbitrary* and can be conveniently chosen.

Work done by a general variable force (Sec. 7-6):

$$W = \int_{x_i}^{x_f} F(x) dx$$

Hence:
$$\Delta U = -\int_{x_i}^{x_f} F(x) dx$$

<u>Gravitational potential energy</u> – energy in a set of separated objects which attract one another via the gravitational force.

$$\Delta U = -\int_{y_i}^{y_f} F(y) dy$$

$$F(y) = -mg$$

$$\Delta U = +mg \int_{y_i}^{y_f} dy = mg \Delta y$$

$$U = mg y$$

Elastic Potential Energy Values

$$\Delta U = -\int_{x_i}^{x_f} F(x) dx$$

$$F(x) = -kx$$

$$\Delta U = +k \int_{x_i}^{x_f} x dx = \frac{1}{2}k x_f^2 - \frac{1}{2}k x_i^2$$

If U=0 at the relaxed length:

$$U = \frac{1}{2}kx^2$$

Conservation of Mechanical Energy

Work-KE Theorem: $\Delta K = W$

Definition: $\Delta U \equiv -W$

$$\therefore \Delta K = -\Delta U$$

$$K_2 - K_1 = -(U_2 - U_1)$$

$$K_2 + U_2 = K_1 + U_1$$

$$\Delta(K + U) = 0$$

Total Mechanical Energy:

$$E_{mec} = K + U$$

$$\Delta E_{mec} = 0$$

Total Mechanical Energy is conserved.

Conservation of Mechanical Energy

$$E = \frac{1}{2}k x^2$$

$$E = \frac{1}{2}mv^2$$

$$E = mgh = mgs\sin\theta$$

An Alternative to Newton's Laws

Solve using vector forces and kinematics.

Easier to solve using conservation of energy.

(frictionless surfaces)

Solving a Kinematics Problem Using Conservation of Energy

m = 0.120 kg $v_i = 7.85 \text{ m/s}$ v at 1.18 m ?

m = .15 kg $v_i = 36 \text{ m/s}$ H = 7.2 mKE when caught Speed when caught

$$M = 55 \text{ kg}$$

 $v_i = 6.5 \text{ m/s}$
 $v_f = 4.1 \text{ m/s}$
 $h = ?$

Snowboarder starts at 4 m/s, v = 0 at top Snowboarder starts at 5 m/s, v = ?

m = 1.70 kgk = 955 N/mCompressed 4.60 cmv at equilibrium position

Reading a Potential Energy Curve

Consider the energy of a particle subject to an elastic force:

$$F = -kx$$
$$U = \frac{1}{2}kx^{2}$$

The range of motion of the particle depends $U_{\rm max}$.

Reading a Potential Energy Curve

A particle subject to a conservative force; e.g. an elastic force: F = -kx

The total mechanical energy of the particle is a constant. U

$$U = \frac{1}{2}kx^2$$

" $\underline{Turning\ Points}$ " when K = 0

$$\Delta U = -W = -F(x)\Delta x$$
$$F(x) = -\frac{dU(x)}{dx}$$

Work is energy transferred to or from a system by means of an external force acting on that system.

$$W = \Delta E_{\text{mec}} = \Delta K + \Delta U$$

changes the energy of the earth-ball system.

Ball-Earth

Work Done on a System by an External Force

$$F - f_k = ma$$

$$v^2 = v_0^2 + 2ad$$

$$F d = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2 + f_k d$$

$$W = \Delta K + \Delta E_{th}$$
 (Thermal Energy)

Work = change in motion + heat (e.g. rubbing your hands together)

Generalizing
$$W = \Delta E_{mec} + \Delta E_{th}$$

Non-Conservative Forces

- What are some non- conservative forces?
 - frictional forces
 - air resistance

$$W = W_c + W_{nc} = -\Delta U + W_{nc} = \Delta K$$

$$W_{nc} = DU + DK$$

$$W_{nc} = \Delta E$$

• Summary:

$$W_{total} = \Delta K$$
 $W_{c} = -\Delta U$
 $W_{nc} = \Delta E$

Conservation of Energy

The *total energy of* a system can change only by amounts of energy that are transferred to or from the system.

$$W = \Delta E = \Delta E_{\text{mec}} + \Delta E_{\text{th}} + \Delta E_{\text{int}}$$

The total energy of an *isolated system* cannot change.

$$\Delta E = \Delta E_{\text{mec}} + \Delta E_{\text{th}} + \Delta E_{\text{int}} = 0$$

In an isolated system, we can relate the total energy at one instant to the total energy at another instant without considering the energies at intermediate times.

Conservation of Energy

Roller coaster without friction as an isolated system

$$\Delta E_{\text{mec}} + \Delta E_{\text{th}} + \Delta E_{\text{int}} = 0$$

$$E_{\text{mec}} = \frac{1}{2} m v^2 + mgh = \text{constant}$$

At Point A:
$$\frac{1}{2} m v_0^2 + mgh = \frac{1}{2} m v_A^2 + mgh = \text{constant}$$

At Point B:
$$\frac{1}{2} m v_0^2 + mgh = \frac{1}{2} m v_B^2 + mg(h/2)$$

At Point C:
$$\frac{1}{2} m v_0^2 + mgh = \frac{1}{2} m v_0^2$$

Drop a Textbook

Drop a 2 kg textbook:

a) W_g

b)

c)

 ΔU_{gp}

 U_{10}

d) U_{1.5}

- If $U_0 = 100 \text{ J}$:
- e) W_g
- f) ΔU
- g) U₁₀
- h) U_{1.5}

Pendulum Problem

bob has a speed v_0 when the cord makes an angle θ_0 with the vertical.

Find an expression for speed of the bob at its lowest position

Least value of v₀ if the bob is to swing down and then up to

- a) Horizontal position
- b) Straight up vertically

60 kg skier starts at rest at a height of 20.0 m above end of a ski jump ramp.

As skier leaves ramp, velocity is at an angle of 280 with horizontal.

Maximum height? With backpack of mass 10 kg?

m= 95.0 kg
h= 3.0 m
$$W_{nc} = -5120 J$$

d = ?

$$W_{nc} = (\frac{1}{2} \text{ mv}_f^2 + \text{mgh}_f) - (\frac{1}{2} \text{ mv}_o^2 + \text{mgh}_0)$$

0.20 kg rocket h_f - h_0 = 29 m 425 J of work is done by propellant v_f = ?

m = 1.60 kgAt x = 0, v = 2.30 m/sv at x = 2.00 m?

