Chapter 7 Kinetic Energy & Work

- 1. Energy
- 2. Work
- 3. Work & Kinetic Energy
- 4. Work Done by a Gravitational Force
- 5. Work Done by a Spring Force
- 6. Work Done by a General Variable Force
- 7. Power

Review & Summary
Questions
Exercises & Problems

Energy & Work

Energy comes in many forms:

- Thermal, Chemical, Atomic, Nuclear Energies
- Energy is conserved.
 - A new tool to solve problems.
- Descriptions of Energy:
 - <u>Potential Energy</u> (Chapter 7)
 - Kinetic Energy motion of a massive object

$$Kinetic\ Energy \equiv \frac{1}{2}mv^2$$

Units:
$$1 \text{ Joule } \equiv 1 \frac{kg m^2}{s^2}$$

August 10, 1972, a large meteorite skipped across the atmosphere.

$$m \approx 4 \times 10^6 \, kg$$
 $v \approx 15 \, \frac{m}{s}$

$$\Delta KE = \frac{1}{2} m v^2 - 0 = 5 \times 10^{14} J$$

 $\Delta KE \approx 0.1 MT \approx 8 WWII atomic bombs$

"Work"

- Work (W) is energy transferred to or from an object by means of a force acting on the object.
 - Energy transferred to the object is positive work.
 - □ Stepping on the gas causes positive work to be done on a car.
 - Energy transferred from the object is negative work.
 - Stepping on the brakes causes negative work to be done on a moving car.

Work & Kinetic Energy

Consider a force acting on an object constrained to move in the x-direction:

$$v^2 = v_0^2 + 2a_x d$$

$$v^{2} - v_{0}^{2} = 2 a_{x} d$$

$$\frac{1}{2} m v^{2} - \frac{1}{2} m v_{0}^{2} = m a_{x} d$$

$$\frac{1}{2} m v^{2} - \frac{1}{2} m v_{0}^{2} = F_{x} d$$

The force causes a change in kinetic energy; the force does work:

$$"Work" \equiv F_x d = F \cos \phi d$$

Units:
$$1 \text{ Joule} = 1 \text{ kg } (m/s)^2 = (1 \text{ kg } m/s^2) m = 1 \text{ N m}$$

A force acting on a particle moving along a curve:

 F_{\perp} does not change the velocity.

$$\cos\phi = \cos 90^0 = 0$$

$$Work = F_S \Delta s$$

$$Work = F \cos \phi \Delta s$$

$$Work = \vec{F} \bullet \overrightarrow{\Delta s}$$

"Work"

- Work (W) is energy transferred to or from an object by means of a force acting on the object.
 - A force does *positive* work when it has a vector component in the same direction as the displacement.
 - A force does *negative* work when it has a vector component in the opposite direction as the displacement.
 - □ A force does **zero** work when it is perpendicular to the displacement.

Work - Kinetic Energy Theorem

$$\Delta W = F_S ds$$

$$W = \int_{s_1}^{s_2} F_S ds = \int_{s_1}^{s_2} m a_S ds$$

$$a_S = \frac{dv}{dt} = \frac{dv}{ds} \frac{ds}{dt} = v \frac{dv}{ds}$$

chain rule for derivatives

$$W = \int_{s_1}^{s_2} m v \frac{dv}{ds} ds = m \int_{v_0}^{v} v \, dv$$

$$W = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$$

$$W = K_f - K_i$$

$$W = \Delta K$$

Net Work Done = Change in Kinetic Energy

Scalar (Dot) Product of Two Vectors

$$\vec{a} \cdot \vec{b} = a b \cos \phi$$

Commutative Law:

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$\vec{a} \bullet \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

Example

$$Work = \vec{F} \cdot \overrightarrow{\Delta s}$$

$$W = F_x \Delta x + F_y \Delta y$$

$$W = (3N)(2m) + (4N)(-5m)$$

$$W = -14Nm$$

Example:

$$V_{\rm f} = ?$$

$$Work = \vec{F}_{net} s$$

$$\vec{F}_{net} = mg\sin 25^0 - f_K$$

$$(mg\sin 25^{0} - f_{K})s = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{0}^{2}$$
$$v_{f} = 19\frac{m}{s}$$

Work done by the forces on the box?

$$W_F = \vec{F} \cdot \vec{d}$$

$$W_F = F d \cos \theta = (210 N)(3 m) \cos(20^0) = 600 J$$

$$W_N = \vec{N} \cdot \vec{d}$$

$$W_N = N d \cos(90^0) = 0 = W_g$$

Object sliding on a frictionless floor

Work = ?

$$F_{net_x} = -F_1 - F_2 \sin 50^0 + F_3 \cos 35^0$$

$$F_{net_y} = -F_2 \cos 50^0 + F_3 \sin 35^0$$

$$F_{net}^2 = F_{net_x}^2 + F_{net_y}^2$$

Since
$$v_0 = 0$$
, d is parallel to F_{net} : $W = F_{net} d$

$$W = 15.3 J$$

Work Done by the Gravitational Force

Going down:

$$W = \vec{F} \cdot \vec{d}$$

$$W = m g d \cos 0^{0}$$

$$W = +m g d$$

The work done by the gravity force increased the kinetic energy of the object.

Going up:

$$W = \vec{F} \cdot \vec{d}$$

$$W = m g d \cos 180^{0}$$

$$W = -m g d$$

The work done by the gravity force reduced the kinetic energy of the object.

Work Done Lifting & Lowering an Object

To raise an object to a new location, an *applied force*, \mathbf{F} , must act to overcome the *gravity force*, \mathbf{F}_{q} .

Consider a case where an object is at rest before and after the move.

 $W_a = mgd$ $W_a = -mgd$

Work- Energy Theorem:

$$K_f - K_i = W_a + W_g$$
But $K_f = K_i = 0$:
$$0 = W_a + W_g$$

$$W_a = -W_g$$

The work done by the applied force is the negative of the work done by the gravitational force.

The work done by the lifter.

Pull with constant force F.

Is less energy expended or less work done when using a pulley (or other such device)?

Pull with constant force F.

Same amount of work!

An object accelerated downwards

a = g/4 drops d Work by cord ? Work by gravity? Final velocity

$$\vec{F} = m\vec{a}$$

$$T - mg = Ma = M\left(-\frac{g}{4}\right)$$

$$T = \frac{3}{4}Mg$$

$$W_T = -\left(\frac{3}{4}Mg\right)d$$

$$W_g = +Mgd \qquad W_{net} = +\frac{1}{4}Mgd$$

 $v_0 = 0$ \vec{d} Mg

Work Energy Theorem:

$$K - K_0 = W_{net}$$

$$\frac{1}{2}M v^2 - 0 = \frac{1}{4}M g d$$

$$v = +\sqrt{\frac{1}{2}g d}$$

Work Done by a Spring Force

Stretching

Hooke's Law: $\vec{F} = -k \vec{d}$ where k = spring constant (N/m)

The force <u>varies</u> linearly with displacement.

Work Done by a Spring Force

Compressing (c)

Hooke's Law:
$$\vec{F} = -k \vec{d}$$

Work done by the spring force:

$$W_{S} = \int_{x_{i}}^{x_{f}} F(x) dx$$

$$W_{S} = -k \int_{x_{i}}^{x_{f}} x dx = -\frac{1}{2} k x^{2} \Big|_{x_{i}}^{x_{f}}$$

$$W_{S} = \frac{1}{2} k x_{i}^{2} - \frac{1}{2} k x_{f}^{2}$$

$$W_{S} = -\frac{1}{2} k x^{2} \qquad (x_{i} = 0)$$

$$W_{a} = -W_{S}$$

A block is dropped on a relaxed spring

$$W_g = mgd$$

$$W_S = -\frac{1}{2}kd^2$$

$$W_{net} = W_g + W_S$$

$$W_{net} = K_f - K_i$$

$$mgd - \frac{1}{2}kd^2 = 0 - \frac{1}{2}mv^2$$

$$v = \sqrt{\left(\frac{k}{m}\right)}d^2 - 2gd$$

$$v = 3.5\frac{m}{s}$$

Work - Kinetic Energy Theorem with a Variable Force

$$W_{S} = \int_{x_{i}}^{x_{f}} F(x) dx = m \int_{x_{i}}^{x_{f}} a_{x} dx$$

$$a_{x} dx = \frac{dv}{dt} dx = \frac{dx}{dt} dv = v dv$$

$$W = m \int_{x_{i}}^{x_{f}} v dv = \frac{1}{2} m v^{2} \Big|_{v_{i}}^{v_{f}}$$

$$W = KE_{f} - KE_{i}$$

Problem

A 10 kg brick moves with the following variable acceleration; how much work is done on the brick in the first 8 seconds.

$$a = \alpha x$$

$$\alpha = \frac{20 \frac{m}{s^2}}{8m} = 2.5 s^{-2}$$

$$a = 2.5x$$

$$W_S = \int_{x_i}^{x_f} F(x) dx = 2.5 m \int_{x_i}^{x_f} x dx$$

$$W = \frac{2.5}{2} m x^2 \Big|_{0}^{8} = \frac{2.5}{2} (10)(8)^2 = 800 J$$

Power

Power = time rate at which Work is done due to a Force.

$$P \equiv \frac{dW}{dt}$$

$$SI Units$$
: 1 Watt = 1 Joule / s = 1 N m / s

English Units: horsepower

$$1 \text{ hp} = 550 \text{ ft lbs/s} = 746 \text{ Watts}$$

For a constant force:
$$P = \frac{d(\vec{F} \cdot \vec{d})}{dt} = \vec{F} \cdot \vec{v}$$

Work = Power x Time
$$1 \text{ kW hr} = 3.6 \times 10^6 \text{ J}$$