Physics 1

Chapter 3 Vectors

- Vectors & Scalars
- 2. Adding Vectors Geometrically
- 3. Components of Vectors
- 4. Unit Vectors
- 5. Adding Vectors by Components
- 6. Vectors & the Laws of Physics
- Multiplying Vectors

Review & Summary

Questions

Exercises & Problems

Vectors & Scalars

A **scalar quantity** only has a **magnitude**.

e.g.: temperature, speed, mass, . . .

A **vector quantity** a **magnitude** and a **direction**.

e.g.: displacement, velocity, acceleration, . . .

All 3 represent the same vector.

All 3 paths represent the same displacement vector.

Adding Vectors Geometrically

"head - to - tail"

Adding Vectors Geometrically

Add vectors in *either* order:

Commutative Law:

$$\vec{b} + \vec{a} = \vec{a} + \vec{b}$$

$$\left(\vec{a} + \vec{b}\right) + \vec{c} = \vec{a} + \left(\vec{b} + \vec{c}\right)$$

Vector Subtraction

 $-\dot{b}$ a vector with the same magnitude but the opposite direction.

$$\vec{d} = \vec{a} + \left(-\vec{b}\right)$$

Components of Vectors

$$a_x = a \cos \theta$$
$$a_y = a \sin \theta$$

$$a_v = a \sin \theta$$

$$\vec{a}$$
 a_y
 a_y
 c

$$a = |\vec{a}| = \sqrt{a_x^2 + a_y^2}$$

$$\tan \theta = \frac{a_y}{a_x}$$

Vectors with Components of Different Signs

Unit Vectors \vec{i} \vec{j} \vec{k}

A **<u>Unit Vector</u>** only specifies a direction.

Unit vector magnitude = 1 Unit vector has no units.

$$\vec{a} = a_x \vec{i} + a_y \vec{j}$$

Unit Vectors in the positive directions of the x, y, z axes:

Proper combinations of a_x and a_y?

Adding Vectors by Components

$$\vec{a} = a_x \vec{i} + a_y \vec{j}$$

$$\vec{b} = b_x \vec{i} + b_y \vec{j}$$

$$\vec{r} = \vec{a} + \vec{b}$$

$$\vec{r} = (a_x + b_x)\vec{i} + (a_y + b_y)\vec{j}$$

Adding Vector Components

$$C_x = A_x + B_x$$

$$C_x = A_x + B_x$$

$$C_y = A_y + B_y$$

Vectors and the Laws of Physics

The properties of the vector do <u>not</u> depend on the choice of coordinate system.

$$\vec{a} = a_x \vec{i} + a_y \vec{j}$$

$$a_x = a \cos \theta$$

$$\vec{a} = a'_x \vec{i}' + a'_y \vec{j}'$$

$$a'_x = a \cos \theta'$$

$$\theta = \theta' + \phi$$

Multiplying Vectors

Multiply a vector by a scalar:

$$\vec{b} = s \vec{a} = (s a_x) \vec{i} + (s a_y) \vec{j}$$

- The Scalar Product
- The Vector Product

Example

Vector a with magnitude 17.0 m is directed $+56.0^{\circ}$ counterclockwise from the + x axis. What are the components a_x and a_y ?.

A second coordinate system is inclined 18.0° with respect to the first. What are the components of a_x ' and a_y '?

Example

A = 5.0 m

B=15.0m

C=18.0 m

R= ? (A + B + C), θ = ?